
The Lottery Ticket Hypothesis in an Adversarial
Setting

by

James Gilles
B.S. Computer Science and Engineering, Massachusetts Institute of

Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 14, 2020

Certified by .
Michael Carbin

Assistant Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

The Lottery Ticket Hypothesis in an Adversarial Setting

by

James Gilles

Submitted to the Department of Electrical Engineering and Computer Science
on August 14, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Deep neural networks are vulnerable to adversarial examples, inputs which appear
natural to humans but are misclassified by deep models with a high degree of con-
fidence. The best known defenses against adversarial examples are network capac-
ity and adversarial training. These defenses are very expensive, greatly increasing
storage, computation, and energy costs. The Lottery Ticket Hypothesis (“LTH”)
may help ameliorate this problem. LTH proposes that deep neural networks contain
“matching subnetworks”, sparse subnetworks to which the network can be pruned
early in training, without losing accuracy. In this thesis, we study whether LTH
applies in the setting of adversarial training for image classification networks. We
find that sparse matching subnetworks indeed exist, and can reduce model sizes as
much as 96% early in training. We also find that the size of an architecture’s smallest
matching subnetworks is always roughly the same, whether or not adversarial training
is used.

Thesis Supervisor: Michael Carbin
Title: Assistant Professor

3

4

Acknowledgments

In my training as a software engineer I did not anticipate working in a discipline as

novel and mysterious as deep learning. I am grateful for the opportunity, and hope

my work can help reduce the social and environmental costs of “artificial intelligence”.

I am indebted to Jonathan Frankle and Michael Carbin for their patient guidance

over the past year and a half. Their cautious approach to scientific work in uncharted

territories has been an invaluable lesson. The members of the Programming Systems

Group as a whole have been excellent friends. I’m glad I got to get silly questions

answered by experts in a whole bunch of subfields I’d never heard of before.

In the past few years, the unwavering support of my friends and family has helped

me overcome seemingly impassable obstacles. In no particular order, I’d like to thank:

Max for pointing out the bugs; Em and Aaron for the fanfic recs; A for the reading; the

Abu Jabers for the laughs; Beth and Rynn for the conversation; Floyd and Barbara

for the peace of mind; E. Shavit for the referral; J. Cullen for the homework; J.

Bartok and L. Wallace for the practice; Richard and Rayellen, for their endless love

and support; and all those who helped meet my material needs while I performed this

work.

5

6

Contents

1 Intro 13

2 Related Work 17

2.1 Adversarial Attacks and Defenses . 17

2.2 Network Compression and The Lottery Ticket Hypothesis 20

2.3 Combining Compression and Adversarial Training 21

3 Methods 23

3.1 Standard Training . 23

3.2 Adversarial Attacks . 25

3.3 Adversarial Training . 27

3.4 Pruning . 29

3.5 Final Algorithm . 30

4 Experimental Results 35

4.1 Methodology . 35

4.2 Results . 37

5 Discussion 41

5.1 Limitations . 42

5.2 Other Observations . 43

5.3 Conclusion . 44

A Hyperparameter Settings 45

7

B Rewind Epoch Comparison 49

C Supplementary Figures 53

C.1 Full Y-Axis Plots . 54

C.2 Comparisons Across Training Adversaries 56

C.3 Outlier Training Plots . 58

8

List of Figures

1-1 Panda to Gibbon . 14

1-2 Physical Adversarial Example . 14

4-1 Pruning-accuracy curves for ResNet-20-1, PGD∞,0.1,𝑛 37

4-2 Pruning-accuracy curves for WideResNet-20-8, PGD∞,0.1,𝑛 38

B-1 Rewind point comparison . 50

C-1 Pruning-accuracy curves for ResNet-20-1, PGD∞,0.1,𝑛, full y-axis . . 54

C-2 Pruning-accuracy curves for WideResNet-20-8, PGD∞,0.1,𝑛, full y-axis 55

C-3 Standard accuracy comparison for ResNet-20, PGD∞,0.1,𝑛 56

C-4 Standard accuracy comparison for WideResNet-20-8, PGD∞,0.1,𝑛 . . 56

C-5 PGD∞,0.1,8 accuracy for ResNet-20 57

C-6 PGD∞,0.1,8 accuracy for WideResNet-20 57

C-7 Outlier training plot . 58

C-8 Non-outlier training plot . 59

9

10

List of Tables

A.1 PGD Strength Comparison Hyperparameters 46

A.2 Rewind Epoch Search Hyperparameters 47

11

12

Chapter 1

Intro

The study of deep learning has advanced by leaps and bounds in the past decade.

Deep learning, a subfield of machine learning, studies deep neural networks (DNNs),

an extremely expressive class of machine learning model. DNNs have proven very

effective at recognizing images [27], text [22], and speech [21], and at other tasks like

playing games [43]. Because of their effectiveness, they have begun to be deployed in

high-risk situations, such as in loan decision algorithms [44] and the control systems

of self-driving cars [2]. However, DNNs are difficult to understand. They have been

termed “black boxes” [3], ingesting input and producing output, with no way to tell

what is going on inside. We are therefore limited in our ability to tell if they are

learning incorrect algorithms [14]. There is growing public concern about whether

DNNs are safe to deploy in contexts with the potential to impact people’s lives [39][17].

In this atmosphere of growing concern about the trustworthiness of DNNs, ad-

versarial attacks pose a particularly thorny problem [15]. Adversarial attacks make

small, nearly human-imperceptible changes to the inputs of DNNs, creating adver-

sarial examples. These examples are misclassified by DNNs with high confidence [46].

(For example, see Figure 1-1.)

13

Figure 1-1: An adversarial example targeting the GoogLeNet [45] architecture, caus-

ing it to misclassify a panda as a gibbon. Image credit [15].

Adversarial attacks pose a significant security threat to real world systems. They

can be used to attack online systems, even if the underlying DNN architecture is not

known [36]. They can also be used to attack systems that perceive the physical world

through sensors [28][7][5]. (For example, see Figure 1-2.) This style of attack poses a

practical security risk for many DNN applications.

Figure 1-2: A physical adversarial example. The model used to 3d print this toy turtle

was attacked using adversarial techniques. Image classification systems consistently

mis-identify the 3d-printed toy as a rifle. Image credit [5].

It is desirable to defend DNNs from this form of attack. Two robust defenses

that have been found are increasing capacity and adversarial training [55]. Increasing

capacity requires adding more connections to a DNN, for instance by multiplying

14

its layer sizes by a factor of 10. Adversarial training is standard DNN training 1

where every input is modified by a synthetic adversary before being fed to the DNN.

These defenses allow DNNs to retain some accuracy in the face of an adversary.

Unfortunately, they are also very expensive, requiring significantly more storage and

computation power. This makes them difficult to use in practice.

Pruning is a technique that severs connections within a DNN in order to reduce

its storage and computation costs. An exciting recent development in pruning is the

Lottery Ticket Hypothesis (LTH) [12][13]. LTH work hypothesizes the existence of

matching subnetworks. These are small, sparse sub-networks that can be found within

full DNNs early in training. If a DNN is pruned to a matching subnetwork, it can

be trained to the same accuracy as a full DNN, nearly entirely in a pruned state. In

practice, techniques such as pruning with rewinding (defined later) can shrink DNNs

to 1-20% of their original size without any loss of accuracy. This reduces the storage

needed for training and deploying DNNs, and also has the potential to reduce the

and energy needed for DNN training.

In this thesis, I study whether the pruning with rewinding procedure finds matching

subnetworks in the setting of adversarial training. I find that matching subnetworks

do exist in the context of adversarial training, and validate the subnetworks I find

by comparison with a number of baselines.

1That is, the stochastic gradient descent algorithm, typically using simple data augmentations
and a learning rate schedule. I give a more rigorous definition in Chapter 3.

15

16

Chapter 2

Related Work

2.1 Adversarial Attacks and Defenses

Adversarial attacks in the context of deep learning were introduced by Szegedy et

al. [46]. They coined the term adversarial example. In the broadest possible terms,

an adversarial example is any DNN input where the DNN output is different from

what a human viewing the input would expect [48]. Typically, adversarial exam-

ples are created by taking an input to a DNN, and modifying it by adding a small

perturbation. For example, for an image classification DNN, the input would be an

image, and the perturbation would be a set of small changes to the pixel values of

the image. These pixel changes would be invisible to a human, but would be able

to trick the model with high probability. An adversarial attack, then, is simply an

algorithm to generate adversarial examples. Szegedy et al. introduced an attack that

used numerical optimization to discover adversarial examples in the context of digit

recognition1. They were able to identify very small changes, invisible to humans, but

which fooled their target DNN.

Goodfellow et al. [15] constructed a simpler attack, the Fast Gradient Sign Method

(FGSM). FGSM is very simple, involving only a single optimization step. It is there-

fore very efficient to compute. Goodfellow et al. also introduced one of the first

1Specifically, they used the box-constrained L-BGFS algorithm, and attacked a small neural
network trained on the MNIST dataset [30].

17

adversarial defenses. An adversarial defense aims to prevent a DNN from being

tricked by adversarial examples. The defense introduced was adversarial training,

which is simply standard DNN training where every input has been adversarially at-

tacked. Over the course of training, the DNN learns not to be fooled by the attack,

and becomes robust. Adversarial training became feasible because FGSM was much

less expensive to compute, relative to earlier attacks. Adversarial training was found

to result in DNNs that are much more robust to adversarial attack, becoming much

harder to fool.

Many other attacks and defenses have been proposed since. Xu et al. [55] provide

an up-to-date survey of these attacks and defenses in a variety of settings. Broadly

speaking, the attacking side is winning. Adversarial attacks are very effective, often

reaching 100% effectiveness on the DNN for which they are generated. They also

transfer : attacks generated for one DNN can fool other DNNs, even DNNs based on

different architectures. It is also possible to create adversarial examples that work

despite many kinds of distortion and filtering of the input. Kurakin et al. [28] create

examples that work through cell phone cameras. That is, they print adversarial

examples on standard printer paper, take photographs of them using a cell phone,

and show that DNNs examining the photographs are still fooled. The attack they

used is called the Basic Iterative Method; I focus on an extension of that attack in

this thesis, Projected Gradient Descent (PGD). I will discuss PGD shortly.

Many types of defenses have been created – and then broken. For instance, gradi-

ent masking defenses attempt to hide gradient information from an adversary. In the-

ory, this would prevent an adversary from applying most adversarial attacks, which

use gradients. However, Carlini & Wagner [8] were able to overcome defenses of

this type using attacks leveraging sparse gradient information. In general, gradient

masking gives a false sense of security [4] – it prevents simple optimization-based

adversaries from discovering adversarial examples, but that doesn’t mean they can’t

be found in general! This sequence of events has repeated itself since, with new

defenses frequently being broken by attacks adapted specifically to them [50]. For

this reason, it is a best practice to validate new defenses using adaptive attacks [9]

18

custom-designed to foil them.

Madry et al. [37] give a useful formal characterization of adversarial attacks and

training, describing previous algorithms as instances of a more general pattern. We

summarize their formalization in Chapter 3. They introduced the Projected Gradient

Descent (PGD) attack, a generalization of previous attacks. They suggest that PGD

is universal, in the sense that it uses only first-order gradient information, and so

should do about as well as any other algorithm with access to the same information.

They also show empirically that DNNs trained against this attack become robust to

future attacks of the same type. (However, the DNNs do not gain much robustness

to other kinds of attack.)

Madry et al. also show that adding capacity to the DNN (for instance, multiplying

layer sizes by ten) can increase robustness. A ResNet-20 [19] trained on the CIFAR10

dataset [26] can reach a standard accuracy of 92.7%. However, standard training

results in DNNs that are extremely vulnerable to adversarial attack. A ResNet-20

achieves only 0.3% adversarial accuracy – i.e. accuracy on a test dataset where

every input has been modified by an adversary. An adversarially trained ResNet-

20 has 51.7% adversarial accuracy. Increasing DNN capacity improves robustness

further. A WideResNet-20-10 [57] is a normal ResNet with layer sizes multiplied by

10. WideResNet-20-10 has accuracies of 95.2% standard : 3.5% attacked : 56.1%

adversarially trained. This change (from 51.7% to 56.1%) is small, but it is one of

the best known defenses beyond adversarial training.

This is a promising result. However, this style of adversarial training is extremely

expensive. The DNN size is increased, requiring more storage and computation.

Additionally, a PGD adversary that takes 𝑛 steps for each input makes each training

step take 𝑛 times as long. DNN training is already extremely time-, storage-, and

energy-intensive [18]. So the additional costs imposed by adversarial training can

make it infeasible for large DNNs and datasets, which already push the limits of

existing hardware. In the next subsection, I discuss a set of techniques that might

help reduce these costs.

19

2.2 Network Compression and The Lottery Ticket

Hypothesis

Network compression is the problem of reducing the size of DNNs, in storage or at

inference time. There are many approaches to network compression, including prun-

ing, quantization, and lossless algorithms; all of which have been applied successfully

to DNNs [16]. Here I focus on pruning.

Pruning has a long history in the neural network literature, originally introduced

in 1980s for MNIST networks [31], and later extended to large DNNs [34]. It can be

divided into structured and unstructured pruning. Structured pruning removes entire

neurons. Unstructured pruning removes only individual connections, leaving most

neurons with at least a few inputs. In this thesis, I focus on unstructured pruning.

A typical pruning algorithm first performs a full training run on an unpruned

DNN. After training, the DNN is pruned. This reduces accuracy, so the pruned DNN

is then fine-tuned for some amount of time – that is, re-trained in a pruned state, to

recover some accuracy.

Frankle et al. [12] introduce the Lottery Ticket Hypothesis, which conjectures

that DNNs can be pruned at the start of training without harming accuracy.

They show that some DNNs contain matching subnetworks2 at initialization. DNNs

can be pruned down to these subnetworks, and then trained entirely in a pruned

state. The resulting DNNs are sparser and more accurate than DNNs that were fully

trained, pruned, and then fine-tuned.

Early lottery ticket work [12] conjectured that these matching subnetworks exist

within all DNNs at initialization, and showed that this is the case for small DNNs,

like ResNet20 on CIFAR10. More recent work [13] has found that in larger DNNs,

matching subnetworks do not necessarily exist at initialization. Instead, they appear

early in training – between 2% and 10% of the way through the training regimen

(when studying a variety of DNNs trained on the large ImageNet dataset).

2Earlier work termed these lottery tickets, but more recent work has adopted matching subnet-
works. I use the latter terminology in this thesis.

20

Currently, the only technique known for discovering matching subnetworks is

pruning with rewinding. Pruning with rewinding works by performing a full train-

ing run and then applying global magnitude pruning – that is, dropping the lowest-

magnitude weights, until the DNN reaches the desired density. The dropped weights

are extracted into a pruning mask, which selects which weights to keep and which to

zero. The DNN is then rewound to a point early in training and pruned by applying

the mask. The pruned subnetwork is then trained, as if for the first time. If the

subnetwork reaches the same or higher accuracy, it is declared matching.

Note that there is currently no known way to discover matching subnetworks,

aside from a full training run. However, the training run does not affect the weights

of the pruned DNN in any way. It is used only as an oracle to discover which weights

to prune. Finding ways to select weights to prune without a full training run is an

active area of research [32][53][47].

Frankle et al. [13] also introduce the concept of the trivial regime. They ob-

serve that, in lightly pruned DNNs, many different techniques for pruning appear to

work equally well. When 90% of connections are left intact, even completely random

pruning will discover matching subnetworks. However, as pruning rates grow more

aggressive, simple pruning techniques fail, and only pruning with rewinding is able

to discover matching subnetworks. In this work, I compare pruning with rewinding

to random early pruning (applied at the same epoch), to ensure that my results are

not within the trivial regime.

2.3 Combining Compression and Adversarial Train-

ing

There have been several other attempts to combine network compression and adver-

sarial training. Ye et al. [56] introduce a technique for concurrent adversarial training

and weight pruning, repeatedly applying small amounts of pruning over the course

of a training run. They also attempt to find matching subnetworks at initialization,

21

following the original LTH paper [12]. However, fail to find them a– because they

only look for matching subnetworks at initialization, and not early in training.

Lin et al. [35] introduce “Defensive Quantization”, which combines standard

weight quantization with the “Parseval Networks” defense [10]. Parseval networks

constrain the Lipschitz constants of individual DNN layers – the amount any layer,

treated as a matrix, can increase the magnitude of its input vector. Constraining the

Lipschitz constant prevents small changes in the input from “blowing up” into large

changes in the output. Their technique is orthogonal to the application of adversarial

training and pruning. Future work could investigate combining defensive quantization

with adversarial LTH.

Li et al. [33] take a different approach to find matching subnetworks in the

adversarial setting. Instead of using pruning with rewinding, they use hyperparameter

search over learning rate schedules. They find schedules that give good accuracy

when DNNs are trained, pruned, and retrained from initialization. They term the

DNNs found through this procedure “Boosting Tickets”, in a nod to the original

Lottery Ticket paper. They achieve good accuracies and pruning rates, reaching

45.7% accuracy at an 80% pruning ratio on PGD∞, 2
255 ,10. They also show that with

carefully chosen learning rate schedules, pruned subnetworks can converge to higher

accuracies than the full network, after only a small number of epochs. However,

their technique requires expensive hyperparameter searches to discover learning rate

schedules for any choice of DNN architecture and adversary.

In this thesis, I focus on the pruning with rewinding technique, which has only one

hyperparameter to tune, and has not previously been applied to adversarially trained

DNNs.

22

Chapter 3

Methods

I aim to answer the question: How small are the smallest matching subnetworks found

by pruning with rewinding combined with adversarial training? To answer this, I im-

plement a framework combining adversarial training and pruning with rewinding,

and run experiments to see if I can find matching subnetworks in a variety of ex-

perimental settings. Here I will provide a sketch of the mathematics of the relevant

training algorithms, adversarial attacks, and pruning techniques, and an overview of

my implementation.

Madry et al. [37] provide a useful formal characterization of adversarial attacks

and defenses. I summarize their formalization here.

3.1 Standard Training

Consider a data distribution 𝒟 consisting of a set of pairs (𝑥, 𝑦) ∼ 𝒟, where 𝑥 ∈ ℝ𝑛 is

an input vector and 𝑦 ∈ {0, 1}𝑘 is a human-supplied label vector. We can construct

a deep neural network 𝑓(𝑥; 𝜃), which takes an input 𝑥 and a vector of parameters

𝜃 ∈ ℝ𝑝, and produces a label. I also define a loss 𝐿(𝑓(𝑥; 𝜃), 𝑦), which measures how

“wrong” a DNN is on some particular input-output pair (for instance, cross-entropy

loss). Standard DNN training, then, attempts to find parameters that minimize the

23

loss over the training set:

min
𝜃

𝔼
(𝑥,𝑦)∼𝒟

[𝐿(𝑓(𝑥; 𝜃), 𝑦)]

Where 𝔼 is expectation, a weighted sum over all inputs. In practice, this minimiza-

tion is performed using stochastic gradient descent (SGD) on the network weights. In

pseudocode, SGD works as follows:

1 # given starting weights, an architecture, data, and a learning rate

2 def train(𝜃0, 𝑓, 𝒟, 𝜆):

3 # repeat:

4 for 𝑖 in range(0, len(𝒟)):

5 # sample input and label

6 𝑥, 𝑦 ∼ 𝒟

7 # compute DNN output

8 ̂𝑦 ← 𝑓(𝑥; 𝜃𝑖)

9 # compute how much the DNN output differs from the correct label

10 𝑙 ← 𝐿(̂𝑦, 𝑦)

11 # compute gradient of loss with respect to parameters --

12 # that is, the amount the loss will increase or decrease,

13 # with changes in each parameter

14 𝑔 ← ∇𝜃𝑖
𝑙

15 # update weights to reduce loss

16 # 𝜆 is the "learning rate", a hyperparameter

17 𝜃𝑖+1 ← 𝜃𝑖 − 𝜆𝑔

18 return 𝜃len(𝒟)

It’s important to note that there is no guarantee that stochastic gradient descent

will actually find the global minimum described above! It may not even find a local

minimum – it can diverge completely if the learning rate is set too high. Nevertheless,

in practice, stochastic gradient descent works extremely well for tuned DNNs.

24

In practice, SGD training is usually divided into epochs using a learning rate

schedule. During each epoch of training, every input is seen once, in a random order.

The learning rate hyperparameter controls how responsive the algorithm is to the

loss gradient. If it is set too high, the algorithm will diverge, and if it is set too low,

the algorithm will converge very slowly. A learning rate schedule allows the learning

rate to be changed over the course of training. Typically, a high learning rate is used

during early epochs, and a lower learning rate is used later.

3.2 Adversarial Attacks

Adversarial attacks attempt to find adversarial examples which “fool” a DNN. In

the broadest sense, this means finding any input 𝑥∗ where the DNN output 𝑓(𝑥∗; 𝜃)

disagrees with a human oracle 𝒪(𝑥∗): 𝑓(𝑥∗; 𝜃) ≠ 𝒪(𝑥∗). Unfortunately, this def-

inition is difficult to use in practice [48]. Human perception is hard to pin down

mathematically. The best one can do is rely on human labeling of inputs, which is

labor-intensive.

For this reason, we focus on a relaxation of this problem based on “small” per-

turbations. Given an input 𝑥 with a human-provided label 𝑦 = 𝒪(𝑥), we would like

to find an input 𝑥∗ that is a “small distance” from 𝑥 that is mislabeled: 𝑓(𝑥∗; 𝜃) ≠ 𝑦.

We assume that, since the distance between 𝑥∗ and 𝑥 is “small”, the oracle label

will usually not change: 𝒪(𝑥∗) ≈ 𝒪(𝑥)1. So we will usually find a true adversarial

example.

The precise meaning of “small” depends on the distance metric chosen. Most work

in image classification has focused on standard ℓ𝑝 norms, which treat the input and

modification as vectors in high-dimensional space2. So given 𝑥, 𝑦 and 𝑓, the problem

is then to select an 𝑥∗, such that 𝑓(𝑥∗; 𝜃) ≠ 𝑦 and ℓ𝑝(𝑥∗ − 𝑥) ≤ 𝜖, for some maximum

distance 𝜖. This can be viewed as selecting a perturbation 𝑑 from a set of allowable

1Of course this is not always the case. See Tram{\‘e}r et al. [48] for more discussion of this topic.
2Other optimization spaces are possible, though. [54] propose a distance metric which allows,

roughly, small smudges to be applied to an image. The adversarial examples they generate have
high ℓ𝑝 distances from the original inputs, but they are nearly indistinguishable to human vision.

25

perturbations 𝑆:

find 𝑑 ∈ 𝑆 such that 𝑓(𝑥 + 𝑑; 𝜃) ≠ 𝑦

Where 𝑆 = {𝑑 | 𝑑 ∈ ℝ𝑛, ℓ𝑝(𝑑) ≤ 𝜖} is the set of perturbations of magnitude

less than 𝜖. This problem has a sharp boundary. We can smooth it by using a loss

function 𝐿 to measure the distance between 𝑓(𝑥 + 𝑑; 𝜃) and 𝑦3. We then have a

maximization problem:

max
𝑑∈𝑆

𝐿(𝑓(𝑥 + 𝑑; 𝜃), 𝑦)

To solve this maximization problem, Madry et al. [37] define Projected Gradient

Descent attack. Projected gradient descent is works by selecting a random starting

perturbation within 𝑆. Then, 𝑛 steps of gradient descent are taken to maximize the

loss. Each step 𝑖 is constrained to be small, by projecting it into a subspace 𝑆𝑖 around

the previous perturbation. This can be thought of as taking a number of small steps

of length 𝑎, which are allowed to sum to a maximum length of 𝜖. This forces the

adversary to explore the interior of the subspace 𝑆4

1 # given an architecture, weights, an input and label,

2 # an subspace, and a number of steps

3 def pgd(𝑓, 𝜃, 𝑥, 𝑦, 𝑆, 𝑛):

4 # initialize a random perturbation within the allowed subspace

5 𝑝0 ∼ 𝑆

6 # repeat:

7 for 𝑖 in range(0, n):

8 # compute output for attacked input

9 ̂𝑦 ← 𝑓(𝑥 + 𝑝𝑖; 𝜃)

10 # compute loss

11 𝑙 ← 𝐿(̂𝑦, 𝑦)

3𝐿 does not have to be the same loss used during training, although in this thesis it always is –
training and attacks both use cross-entropy loss.

4Without being forced to take small steps, projected gradient descent will only be able to explore
the boundary of S. This greatly reduces the space available for the algorithm to explore, and so
should be avoided.

26

12 # compute the gradient of the loss wrt the perturbation:

13 𝑔 ← ∇𝑝𝑙

14 # update the perturbation to *maximize* the loss:

15 𝑝𝑖+1 ← 𝑝𝑖 + 𝑔

16 # project the perturbation back into

17 # the subspace for this step (and the overall subspace)

18 𝑝𝑖+1 ← project(𝑝𝑖+1, 𝑆𝑖 ∩ 𝑆)

19 return 𝑥 + 𝑝

Again, this algorithm is in no way guaranteed to find the best possible pertur-

bation in the given subspace. However, in practice, it is known to be very good at

fooling DNNs [37].

Besides the network and image to attack, this algorithm has three hyperparam-

eters: the subspace 𝑆, the step subspace 𝑆𝑖, and the number of steps to take 𝑛.

Following previous work [37], I focus on ℓ𝑝 ball subspaces, where perturbations are

allowed to have a maximum magnitude of 𝜖 according to the ℓ𝑝 metric. I describe

PGD adversaries as PGD𝑝,𝜖,𝑛, where 𝑝 is the order of the metric, 𝜖 is the radius of

the 𝑙𝑝 ball, and 𝑛 is the number of PGD steps taken within it. For 𝑆𝑖, I choose a

ball of size 𝑎 around the previous PGD step. I choose 𝑎 = 𝜖/𝑛; that is, the adversary

takes 𝑛 steps of size 𝑎, which can add up to a maximum of 𝜖.

For example: PGD∞,0.1,8 refers to an adversary that takes 8 steps in an ℓ∞ ball

of size 0.1 (given an input vector with components normalized to [0, 1]).

3.3 Adversarial Training

Adversarial training attempts to find a network that is difficult to attack. We would

like to limit the amount an adversary can possibly confuse the network. This can be

written as a min-max problem.

min
𝜃

𝔼
(𝑥,𝑦)∼𝒟

[max
𝑑∈𝑆

𝐿(𝑓(𝑥 + 𝑑; 𝜃), 𝑦)]

27

That is, find the parameters 𝜃 which minimize the maximum amount an adversary

can possibly confuse the network, around all inputs in the training data.

In practice, this problem can be solved by applying PGD to every to every input

seen during training. This trains the network to ignore the adversary, and can result

in DNNs that are significantly more robust than those trained in the standard way.

The algorithm is as follows:

1 def adv_train(𝑓, 𝒟, 𝜆, 𝑆, 𝑛):

2 𝜃0 ∼ RAND_INIT()

3 for 𝑖 in range(0, len(𝒟)):

4 𝑥, 𝑦 ∼ 𝒟

5 # compute prediction on clean data

6 ̂𝑦 ← 𝑓(𝑥𝑎𝑑𝑣; 𝜃𝑖)

7 # attack with pgd:

8 # attempt to change the network's prediction

9 𝑥𝑎𝑑𝑣 ← pgd(𝑓, 𝜃𝑖, 𝑥, ̂𝑦, 𝑆, 𝑛)

10 # train on the attacked input

11 ̂𝑦𝑎𝑑𝑣 ← 𝑓(𝑥𝑎𝑑𝑣; 𝜃𝑖)

12 𝑙 ← 𝐿(̂𝑦𝑎𝑑𝑣, 𝑦)

13 𝑔 ← ∇𝜃𝑖
𝑙

14 𝜃𝑖+1 ← 𝜃𝑖 − 𝜆𝑔

Note that, during training, the label argument passed to PGD is based on the model’s

prediction ̂𝑦, rather than the data’s true label 𝑦. This is necessary to avoid the

phenomenon of label leaking [29], where using the true label during training can

inadvertently leak information to the model for weak attacks.

This algorithm is very expensive. PGD with 𝑛 steps is roughly 𝑛 + 2 times as

expensive as standard training, in terms of computation: it requires a full inference

to compute the model’s prediction for the input data, one run of backpropagation for

each PGD step, and then another backpropagation step to update the model weights.

28

3.4 Pruning

Now I add pruning to the algorithm. Given a DNN 𝑓(𝑥; 𝜃) I define a subnetwork

𝑓(𝑥; 𝑚 ⊙ 𝜃), where ⊙ denotes elementwise multiplication, and 𝑚 ∈ {0, 1}𝑝 is a mask

which selects weights to force to zero – that is, which connections to sever. There

are many different algorithms to discover subnetworks. In this thesis I use global

magnitude pruning. Global magnitude pruning (GMP) simply severs the lowest-

magnitude connections in a network. If a network with 25% of connections remaining

is desired, GMP would sort all the connections in a network by weight, and drop the

bottom 75% of them.

Typically, global magnitude pruning is applied at the end of training, and the

network is then trained further to recover lost performance [12]. This procedure is

called “fine-tuning”:

1 # given an architecture, data, an epoch count, a pruning rate, and a

learning rate schedule↪

2 def fine_tune(𝑓, 𝒟, 𝑁, 𝑤, 𝜆):

3 # randomly initialize weights

4 𝜃0 ← RAND_INIT()

5 # initial training run; 𝑁 epochs

6 for 𝑖 in range(0, 𝑁):

7 𝜃𝑖+1 ← train(𝑓, 𝜃𝑖, 𝒟, 𝜆𝑖)

8 # discover mask

9 𝑚 ← global_magnitude_pruning(𝜃𝑁, 𝑤)

10 # apply mask

11 𝜃∗
0 ← 𝜃𝑁 ⋅ 𝑚

12 # fine-tuning training run; 𝑁 epochs

13 for 𝑖 in range(0, 𝑁):

14 𝜃∗
𝑖+1 ← train(𝑓, 𝜃∗

𝑖 , 𝒟, 𝜆𝑖)

15 return 𝜃∗
𝑁

29

However, it is in fact possible to prune very early in training. The pruning with

rewinding methodology [13] gives us a technique for this. First, a full training run

is performed, and a mask is discovered through global magnitude pruning. However,

before applying the mask, the network is rewound to early in training:

1 # new parameter: r, rewind epoch

2 def prune_with_rewinding(𝑓, 𝒟, 𝑁, 𝑤, 𝜆, 𝑟):

3 𝜃0 ← RAND_INIT()

4 for 𝑖 in range(0, 𝑁):

5 𝜃𝑖+1 ← train(𝑓, 𝜃𝑖, 𝒟, 𝜆𝑖)

6 𝑚 ← global_magnitude_pruning(𝜃𝑁, 𝑤)

7 # apply mask to rewound network: 𝜃𝑟 instead of 𝜃𝑁

8 𝜃∗
0 ← 𝜃𝑟 ⋅ 𝑚

9 for 𝑖 in range(0, 𝑁):

10 𝜃∗
𝑖+1 ← train(𝑓, 𝜃∗

𝑖 , 𝒟, 𝜆𝑖)

11 return 𝜃∗
𝑁

A matching subnetwork is a subnetwork where the final pruned network beats the

accuracy of the full network. The fact that these matching subnetworks exist (for

standard training) show that the network could have been pruned early in training

and trained in a pruned state. However, currently there is no known algorithm for

discovering the relevant mask, aside from a full training run.

3.5 Final Algorithm

Now I aim to answer whether this is possible for adversarial training. The final

algorithm is a simple combination of pruning with rewinding and adversarial training,

where adv_train is used instead of train.

1 def adv_prune_with_rewinding(𝑓, 𝒟, 𝑁, 𝑤, 𝜆, 𝑟, 𝑆, 𝑛):

2 𝜃0 ← RAND_INIT()

30

3 for 𝑖 in range(0, 𝑁):

4 𝜃𝑖+1 ← adv_train(𝑓, 𝜃𝑖, 𝒟, 𝜆𝑖, 𝑆, 𝑛)

5 𝑚 ← global_magnitude_pruning(𝜃𝑁, 𝑤)

6 𝜃∗
0 ← 𝜃𝑟 ⋅ 𝑚

7 for 𝑖 in range(0, 𝑁):

8 𝜃∗
𝑖+1 ← adv_train(𝑓, 𝜃∗

𝑖 , 𝒟, 𝜆𝑖, 𝑆, 𝑛)

9 return 𝜃∗
𝑁

The algorithm is straightforward, but has many hyperparameters, including:

• The dataset (𝒟)

• The network architecture (𝑓)

• The training schedule (𝑁, 𝜆)

• The perturbation subspace (𝑆), step subspace (𝑆𝑖) and number of steps taken

by the adversary (𝑛)

• The fraction of weights to leave intact (𝑤)

• The rewind epoch (𝑟)

Following previous work, I focus on adversarial attacks on image classification

DNNs. Adversarial training is very expensive, and I aim to run a large number of

experiments, so I focus on the moderately-sized CIFAR10 dataset [26] rather than

a larger dataset like ImageNet [41]. For network architecture, I select ResNets [19]

and WideResNets [57], which are widely-studied architectures that allow easy scaling.
5. Note that WideResNets can be viewed simply as ResNets with scaled layer sizes:

WideResNet-20-1 is precisely the same as ResNet-20, and WideResNet-20-8 is the

same as a ResNet-20 with its activation vector sizes multiplied by 8. I use the standard

ResNet learning rate schedule.
5Specifically, I focus on ResNet/WideResNet v1 rather than ResNet v2 [20], with Conv-BN-ReLU

residual units

31

For data augmentation, I apply random left-right flips, and padding of 4 pixels

+ random cropping back to 32 pixels. I normalize input pixels to the range [0, 1],

apply adversarial attacks constrained to [0, 1], and then inside the model perform

dataset normalization. This simulates real-world attacks, where an adversary cannot

create pixel values out of the [0, 1] range expressible in an RGB image. I focus on the

PGD adversarial attack under the ℓ∞ norm, although other attacks could easily be

swapped into the algorithm. 6 I fix 𝜖 = 0.1, 𝑎 = 𝜖/𝑛.

This leaves a number of hyperparameters available to explore:

• PGD parameters:

– 𝑛: the number of steps taken by projected gradient descent.

• WideResNet parameters:

– The number of layers. I fix this to 20.

– 𝑘: width, the multiplier applied to all layer sizes. I study 𝑘 = 1 (Resnet-20)

and 𝑘 = 8 (WideResNet-20-8)7.

• Pruning parameters:

– 𝑤: the density of the pruned network (i.e. the fraction of weights remain-

ing after pruning).

– 𝑟: the rewind epoch I apply pruning at. I select 𝑟 = 8.

I perform several grid searches across these hyperparameters. I find that match-

ing subnetworks exist early in training for a variety of adversary strengths,

pruning rates, and WideResNet sizes.

My code is implemented using Tensorflow 2[1], using the CleverHans library for

adversarial attacks[40] – specifically, the cleverhans.future extension for Tensorflow
6The ℓ∞ norm constrains the maximum amount any individual pixel can vary, so an 𝜖 of 0.1

would allow all pixels to be modified by a maximum of 0.1.
7The original WideResNets paper [57] adds 2 to the layer count in names, for some reason

denoting this architecture WideResNet-22-1. I ignore this and denote it WideResNet-20-1, for the
sake of consistency with the original ResNets paper[19].

32

2. I parallelize experiments using the Dask library for cluster management[11]. I

collate and plot data using the xarray[23], Holoviews[6], and Matplotlib[24] libraries.

33

34

Chapter 4

Experimental Results

I aim to answer the question: How small are the smallest matching subnetworks

found by pruning with rewinding combined with adversarial training? I break this

into three sub-questions:

Sub-question 1. Does pruning with rewinding discover any matching subnet-

works? (That is, does it ever find subnetworks that meet or exceed the accuracy

of the full DNN?)

Sub-question 2. If found, are any of these subnetworks non-trivial? (That is,

are they found at densities where random pruning cannot match the accuracy of the

full DNN?)

Sub-question 3. If found, how do the minimum sizes of these subnetworks compare

to the minimum sizes found for natural training?

4.1 Methodology

Experimental Framework I use the experimental framework described in Meth-

ods, applying pruning with rewinding combined with adversarial training. The main

independent variable I vary is the density of the pruned subnetwork, 𝑤. The depen-

35

dent variable is adversarial test accuracy: classification accuracy on a set of images

the DNN has never seen before, attacked by the same adversary used during training.

I study multiple architectures and adversaries to ensure my results hold in a variety

of settings. I plot network density against adversarial test accuracy for 4 adversaries

of different strengths: PGD∞,0.1,1, PGD∞,0.1,2, PGD∞,0.1,4, and PGD∞,0.1,8. I also

include standard training, i.e. no adversary, for the sake of comparison. I compare

across two DNN architectures, ResNet-20 and WideResNet-20-8. I use a rewind epoch

(𝑟) of 8, out of 160 training epochs total. The random pruning baseline is applied at

the same training epoch, and prunes randomly across the network, with all weights

given an even chance of being cut. A full table of all hyperparameters used in this

experiment is available in Table A.1.

36

4.2 Results

Plots. Figure 4-1 shows the adversarial accuracy of ResNet-20 when pruned to

various densities, and Figure 4-2 shows the same for WideResNet-20-8.

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.76

0.80

0.84

0.88

0.92

Te
st

A
cc

ur
ac

y

Standard Training

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.70

0.75

0.80

0.85

0.90

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,1

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.30

0.33

0.36

0.39

0.42

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,2

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.275

0.300

0.325

0.350

0.375

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,4

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.275

0.300

0.325

0.350

0.375

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,8

Figure 4-1: Pruning-accuracy curves for ResNet-20 on CIFAR10. Pruning with

rewinding in blue, random pruning baseline in red; dashed line shows full network

accuracy. Spreads show standard deviation across 2 replicates. All DNNs were tested

on the adversary they trained on. Different y axes. Full hyperparameters available

in Table A.1.

37

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.90

0.91

0.92

0.93

0.94
Te

st
A

cc
ur

ac
y

Standard Training

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.86

0.88

0.90

0.92

0.94

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,1

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.4

0.5

0.6

0.7

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,2

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.390

0.405

0.420

0.435

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,4

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.390

0.405

0.420

0.435

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,8

Figure 4-2: Pruning-accuracy curves for WideResNet-20-8 on CIFAR10. Pruning

with rewinding in blue, random pruning baseline in red; dashed line shows full network

accuracy. Spreads show standard deviation across 2 replicates. All DNNs tested on

the adversary they trained on. Different y axes. Full hyperparameters available in

Table A.1.

38

Sub-question 1. I find that matching subnetworks exist for most adversaries.

Matching subnetworks can be found where the pruning-with-rewinding accuracy meets

or exceeds the full-network accuracy. This occurs for all adversaries except PGD∞,0.1,1.

Sub-question 2. These matching subnetworks occur at nontrivial sparsities. For

very dense subnetworks, both pruning strategies are equivalent; this can be seen at the

left side of each plot, where both random pruning and pruning with rewinding match

the full network accuracy. However, as density decreases, random pruning quickly

stops matching, making the remaining matching subnetworks found by pruning with

rewinding nontrivial.

Sub-question 3. I find that the smallest matching subnetworks found under ad-

versarial training are the same size or smaller as those found under standard

training. The smallest matching subnetworks exist at 26% density for ResNet-20,

and at 4% density for WideResNet-20-8, for standard training and all adversaries

except PGD∞,0.1,1. PGD∞,0.1,2 on WideResNet-20-8 has a matching subnetwork at

a lower density than that of natural training, 3%.

39

40

Chapter 5

Discussion

Findings. I find that nontrivial matching subnetworks exist for most adver-

saries, and that they are no larger for adversarial training than for standard

training. That is to say, we can prune very early in training, train only the pruned

subnetwork, and have resulting DNN reach the same accuracy as a full-sized network.

This result cannot currently reduce the cost of training, since a full training run is re-

quired to discover the early pruning mask. However, discovering early pruning masks

is an active area of research[32][53][47]. These results suggest that, if a technique

for discovering matching subnetworks early in training is found, it can be fruitfully

applied in the context of adversarial training.

Possible Implications. More speculatively, these results suggest that there may

be a limitation on the number of parameters a DNN can effectively use. Previous

research has implied that adversarial training may be a qualitatively different task

from natural training [51][25]. However, I found that standard and adversarially

trained networks can be pruned the same amount. On CIFAR10, after 8 epochs

of training, 75% of weights in a ResNet-20 and 96% of weights in a WideResNet-

20-8 seem to become useless. Why are these weights not being used? From these

results I cannot say, but it is possible that this is a fundamental limitation of these

architectures. Investigating whether these pruning rates hold on other tasks could be

an interesting direction for future work.

41

5.1 Limitations

Limited hyperparameters. While I sample a large number of pruning rates, I am

only able to study a small number of other hyperparameters. I study only two DNN

architectures – ResNet-20, and its wider variant WideResNet-20-8. I also study only

a small number of adversary settings, using only PGD under the ℓ∞ metric. Future

work could study other architectures and adversaries – such as PGD under the ℓ2

or ℓ1 metrics, or more exotic attacks [54]. I also run only 2 replicates for each set

of hyperparameter settings. A few of our plots have high variances, suggesting that

more replicates might be useful.

Nonstandard 𝜖. I use a nonstandard value of 𝜖 for CIFAR10 – 0.1, for pixels in

the range [0, 1]. In the literature, many different 𝜖 values are used, but smaller values

such as 8
256 are used for CIFAR10 in some seminal works[37]. Overlarge values of

𝜖 have been known to sometimes cause problems[48]. Unfortunately, I realized this

discrepancy after running most of my experiments, and due to time limitations I was

unable to re-run them using a typical value. Appendix B reports additional results

for 𝜖 = .3 which are consistent with my observations. Future work could try the

standard value of 𝜖, and indeed study other possible values as well.

No adaptive validation. It is a best practice to validate new adversarial defenses

using adaptive attacks custom-designed to defeat them [9]. I do not perform adaptive

validation in this thesis, because I have not introduced any new defenses. I am instead

investigating the interaction between an existing defense (adversarial training) and

pruning. Moreover, adversarial training is known to be quite strong. In competitions

to discover adaptive attacks for WideResNets trained on CIFAR10 [52], no adaptive

attacks have been able to reduce the accuracy of PGD-trained networks by more than

a few percent1. So it is not clear what adaptive attack I could have used, even if I

did wish to use one.
1…when optimizing within the same subspace 𝑆. However, such networks are not robust within

subspaces induced by other distance metrics[37]. Defending networks against multiple perturbation
types is an active area of research [49][38].

42

5.2 Other Observations

Relative Pruning Rates. WideResNet-20-8 can be pruned much farther than

ResNet-20, to 4% density rather than 24% density. This is somewhat unsurprising,

since WideResNet-20-8 is 64 times larger than ResNet-202. The parameter count of

the pruned WideResNet is 64 ∗ 0.04 = 2.56 times the parameter count of the original

ResNet. Increasing network size is a common adversarial defense [37]; this result

shows that pruning with rewinding can significantly reduce the cost of this defense,

at least in terms of parameter count. An future experiment could push pruning

further for WideResnet, until parameter counts are directly comparable with ResNet,

and then compare their relative accuracies.

Groupings of adversarial accuracies. For both architectures under study, stan-

dard training and training on PGD∞,0.1,1 result in accuracies within 10 points of 90%.

By comparison, PGD∞,0.1,2, PGD∞,0.1,4, PGD∞,0.1,8 result in accuracies within 10

points of 40%. This is more apparent in the full-y-axis versions of the figures avail-

able in the appendices, Figures C-1 and C-2). So, rather than accuracy decreasing

steadily as 𝑛 increases, it stays constant and then drops abruptly. The exception is

PGD∞,0.1,2 with WideResNet-20-8. Networks trained with these settings are mostly

within 10 points of 40% accuracy, except for a few outliers with 76%, 69%, and 59%

respectively. These large jumps in adversarial accuracy occur nowhere else in the

dataset. To me, this behavior resembles a phase transition [42], with high accuracy

on one side and low accuracy on the other. WideResNet-20-8 with PGD∞,0.1,2 re-

sides on a metastable position on the border, able to fall into one phase or the other

by chance. Future work could study whether scanning across other hyperparameters

such 𝜖 leads to similar phase-like behavior. See Appendix C.3 for more information.

2This may be somewhat confusing, given the name. So, note that WideResNet-20-8 has all
activation vectors widened by a factor of 8. This increases the overall parameter count of the
network by a factor of 82, or 64. This is because the parameter count of a layer scales linearly with
the sizes of its input and output vector. So if both are increased, the size of the network increases
quadratically.

43

5.3 Conclusion

I find that, once pruning masks are discovered, they can be applied very early in ad-

versarial training, and the resulting sparse networks train to comparable accuracy to

full networks. This allows significant size reductions of trained networks. In addition,

it has the potential for energy savings and training time reductions. Unfortunately,

there are currently no known algorithms for discovering early pruning masks aside

from pruning with rewinding [13]. Our results suggest that, if such a technique is

discovered, it can be applied fruitfully in the adversarial setting.

44

Appendix A

Hyperparameter Settings

Variable parameters are in bold.

45

Table A.1: PGD Strength Comparison Hyperparameters
Hyperparameter Value
Replications 2
Dataset CIFAR10
Pixel range [0, 1] + CIFAR10 standardization in model
Data augmentation Horizontal flips, random crop with up to 4 0 pixels per side
Data shuffling Yes
Batch size 128
Training epochs 160
Training loss Cross-entropy
Training Optimizer SGD
SGD LR (epoch 0) 0.1
SGD LR (epoch 80) 0.01
SGD LR (epoch 120) 0.001
SGD momentum 0.9
SGD Nesterov No
Density 80% ^ [2,4,6,8,10,12,14,16]
Pruning strategy [global magnitude pruning with rewinding, random]
Rewind point epoch 8
Training attack PGD
PGD norm 𝑙∞
PGD steps (𝑘) [0,1,2,4,8]
PGD epsilon (𝜖) 0.1
PGD step epsilon (𝑎) 𝜖/𝑛
PGD random initialization Yes
PGD label-leaking mitigation Yes
PGD loss Cross-entropy
Model WideResnet v1 (Conv-BN-ReLU)
Model width multiplier [1, 8]
Resnet Blocks 20

46

Table A.2: Rewind Epoch Search Hyperparameters
Hyperparameter Value
Replications 4
Dataset CIFAR10
Pixel range [0, 1] + CIFAR10 standardization in model
Data augmentation Horizontal flips, random crop with up to 4 0 pixels per side
Data shuffling Yes
Batch size 128
Training epochs 160
Training loss Cross-entropy
Training Optimizer SGD
SGD LR (epoch 0) 0.1
SGD LR (epoch 80) 0.01
SGD LR (epoch 120) 0.001
SGD momentum 0.9
SGD Nesterov No
Weights remaining (𝑤) [30%, 50%, 70%]
Test adversary Same as train adversary
Pruning strategy [global magnitude pruning with rewinding, random]
Rewind point (𝑟) epochs [0, 1, 2, 4, 8, 16, 32, 64, 128]
Training attack PGD
PGD norm 𝑙∞
PGD epsilon (𝜖) 0.3
PGD steps (𝑛 1
PGD step epsilon (𝑎) 𝜖/𝑛
PGD random initialization Yes
PGD label-leaking mitigation Yes
PGD loss Same as training (Cross-entropy)
Model ResNet v1 (Conv-BN-ReLU)
Model width multiplier 1
ResNet Blocks 20

47

48

Appendix B

Rewind Epoch Comparison

Before the primary experiment listed in the paper, I ran an experiment to determine

the correct rewind epoch 𝑟 to use for pruning with rewinding. I fixed 3 pruning

rates and compared power-of-two rewind epochs. Unfortunately, this experiment

used PGD∞,0.3,1 – an 𝜖 of 0.3, which is extremely large for CIFAR10. The fact that

these networks converged at all is somewhat surprising, and is likely due to the limited

ability of PGD with 𝑛 = 1 to optimize within the available space; it could also be an

indication of learned gradient masking [4]. I realized this after the fact, and lowered 𝜖

for my later experiments. Full hyperparameters for this experiment available in Table

A.2.

49

0 1 2 4 8 16 32 64 128
Rewind Epoch

0.75

0.80

0.85

0.90

Te
st

A
cc

ur
ac

y

Density (𝑤): 70%

0 1 2 4 8 16 32 64 128
Rewind Epoch

0.75

0.80

0.85

0.90

Te
st

A
cc

ur
ac

y

Density (𝑤): 50%

0 1 2 4 8 16 32 64 128
Rewind Epoch

0.75

0.80

0.85

0.90

Te
st

A
cc

ur
ac

y

Density (𝑤): 30%

Figure B-1: Rewind point comparison for ResNet-20 on CIFAR10. Pruning with

rewinding in blue, random pruning baseline in red; dashed line shows full network

accuracy. Spreads show standard deviation across 4 replicates. All DNNs were tested

on the adversary they trained on.

50

Despite the theoretically strong adversary, the DNNs converge, and matching

subnetworks are discovered. From these results I concluded that a rewind point 𝑟

of 8 seemed adequate for finding matching subnetworks, although other values could

have worked as well. However, an 𝑟 of 0 – pruning at initialization – wouldn’t have

found matching subnetworks, which is precisely the reason why recent LTH work has

moved to pruning with rewinding [13].

Note also that a density (𝑤) of 70% is trivial for this architecture and adversary,

since random pruning can find matching subnetworks as well as pruning with rewind-

ing (even though it is, on average, still slightly worse than pruning with rewinding.)

However, lower densities are nontrivial.

51

52

53

Appendix C

Supplementary Figures

C.1 Full Y-Axis Plots

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Standard Training

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,1

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,2

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,4

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,8

54

Figure C-1: Version of Figure 4-1 with full y-axis shown. Pruning-accuracy curves

for ResNet-20 on CIFAR10. Pruning with rewinding in blue, random pruning

baseline in red; dashed line shows full network accuracy. Spreads show standard

deviation across 2 replicates. All DNNs were tested on the adversary they trained

on. Full hyperparameters available in Table A.1.

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Standard Training

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,1

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,2

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,4

100%64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.00

0.25

0.50

0.75

1.00

Te
st

A
cc

ur
ac

y

Adversary: PGD∞,0.1,8

Figure C-2: Version of Figure 4-2 with full y-axis shown. Pruning-accuracy curves for

WideResNet-20-8 on CIFAR10. Pruning with rewinding in blue, random pruning

baseline in red; dashed line shows full network accuracy. Spreads show standard

deviation across 2 replicates. All DNNS tested on the adversary they trained on.

Full hyperparameters available in Table A.1.

55

C.2 Comparisons Across Training Adversaries

Here I plot the standard accuracy for all networks. Different colors show networks

with different training adversaries; all networks use no testing adversary (standard

testing).

64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.5

0.6

0.7

0.8

0.9

St
d.

Te
st

A
cc

ur
ac

y Train PGD 𝑛
0
1
2
4
8

Figure C-3: Standard accuracy for ResNet-20 on CIFAR10 across different

training adversaries. Random baseline not shown.

64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.7

0.8

0.9

St
d.

Te
st

A
cc

ur
ac

y Train PGD 𝑛
0
1
2
4
8

Figure C-4: Standard accuracy for WideResNet-20-8 on CIFAR10 across dif-

ferent training adversaries. Random baseline not shown.

In these plots, it can be seen that DNNs trained on stronger adversaries (with

higher 𝑛) have significantly lower standard test accuracies relative to DNNs trained

on weaker adversaries. However, their standard accuracies are still not as low as their

adversarial accuracies (~70% > ~40%).

Next, I plot the PGD∞,0.1,8 accuracy for all networks, the strongest adversary

tested.

56

64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.1

0.2

0.3

0.4

0.5
A

dv
.

Te
st

A
cc

ur
ac

y Train PGD 𝑛
0
1
2
4
8

Figure C-5: Adversarial accuracy (against the strongest tested adversary,

PGD∞,0.1,8) for ResNet-20 on CIFAR10. Y axis shows standard accuracy – in-

puts not modified by an adversary. Lines colored by their training adversary. Random

baseline not shown.

64% 41% 26% 17% 11% 7% 4% 3%
Density (𝑤)

0.1

0.2

0.3

0.4

0.5

A
dv

.
Te

st
A

cc
ur

ac
y Train PGD 𝑛

0
1
2
4
8

Figure C-6: Adversarial accuracy (against the strongest tested adversary,

PGD∞,0.1,8) for WideResNet-20 on CIFAR10. Y axis shows standard accuracy

– inputs not modified by an adversary. Lines colored by their training adversary.

Random baseline not shown.

Here, we can see that DNNs trained on stronger adversaries, despite having lower

standard accuracy, have much higher adversarial accuracy. The minimum possible

test accuracy here is 0.1, since we still use a label leaking mitigation during testing; so

a non-adversarially trained network reaches near-minimum accuracy when attacked

by a strong adversary.

So it seems that, as the value of 𝑛 increases, standard accuracy decreases but

robustness to strong adversaries increases. This is the expected result [37].

57

C.3 Outlier Training Plots

In Subsection 5.2 I discuss several networks which reached unexpectedly high accu-

racy. Here I plot their accuracies during training. Note that, unlike in Figure C-3 and

Figure C-4, different lines show different testing adversaries applied to a single

network, which used a single training adversary.

20 40 60 80 100 120 140
Training Epoch

0.2

0.4

0.6

0.8

A
dv

.
Te

st
A

cc
ur

ac
y Test PGD 𝑛

0
1
2
4
8

Figure C-7: Training plot for an outlier DNN. WideResNet-20, CIFAR10,

PGD∞,0.1,2, 11% of weights remaining, first replicate. Network was tested against

all adversaries after every training epoch; different lines show different adversaries

but the same network.

It can be seen that the sudden jump in accuracy occurs late in training, apparently

unprompted by any LR changes. (See Table A.1 – the last LR change happens in

Epoch 120, a few epochs after the jump occurs.) The jump improves accuracy against

weaker adversaries, but slightly reduces it for the strongest adversary. The cause of

this sudden change is unknown. For comparison, see the other network trained with

these hyperparameter settings, which experienced no such jump:

58

20 40 60 80 100 120 140
Training Epoch

0.2

0.4

0.6

0.8
A

dv
.

Te
st

A
cc

ur
ac

y Test PGD 𝑛
0
1
2
4
8

Figure C-8: Training plot for a non-outlier DNN. WideResNet-20, CIFAR10,

PGD∞,0.1,2, 11% of weights remaining, second replicate. Network was tested against

all adversaries after every training epoch; different lines show different adversaries

but the same network.

59

60

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Evan Ackerman. How drive.ai is mastering autonomous driving with deep learn-
ing. IEEE Spectrum, Mar 2017.

[3] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using
linear classifier probes. CoRR, 2016.

[4] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples. In
International Conference on Machine Learning, 2018.

[5] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples. CoRR, 2017.

[6] Holoviews Authors. Holoviews. https://github.com/holoviz/holoviews, 2016.

[7] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial patch. CoRR, 2017.

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy (SP), 2017.

[9] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-
rakin. On evaluating adversarial robustness. CoRR, 2019.

[10] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas
Usunier. Parseval Networks: Improving Robustness to Adversarial Examples. In
International Conference on Machine Learning, 2017.

61

https://github.com/holoviz/holoviews

[11] Dask Development Team. Dask: Library for dynamic task scheduling, 2016.

[12] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. In International Conference on Learning
Representations, Mar 2019.

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael
Carbin. Linear mode connectivity and the lottery ticket hypothesis. In In-
ternational Conference on Machine Learning, 2020.

[14] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining Explanations: An Overview of Interpretability of
Machine Learning. In The 5th IEEE International Conference on Data Science
and Advanced Analytics, May 2018.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. In International Conference on Learning Repre-
sentations, 2015.

[16] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
CoRR, 2015.

[17] Karen Hao. We can’t trust ai systems built on deep learning alone. MIT Tech-
nology Review, 2017.

[18] Karen Hao. Training a single ai model can emit as much carbon as five cars in
their lifetimes. MIT Technology Review, Jun 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. CoRR, 2016.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

[23] S. Hoyer and J. Hamman. xarray: N-D labeled arrays and datasets in Python.
Journal of Open Research Software, 5(1), 2017.

[24] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

62

[25] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial Examples Are Not Bugs, They Are
Features. In Neural Information Processing Systems, 2019.

[26] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[28] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. CoRR, 2016.

[29] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning
at scale. CoRR, 2016.

[30] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[31] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2,
pages 598–605. Morgan-Kaufmann, 1990.

[32] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot
network pruning based on connection sensitivity.

[33] Bai Li, Shiqi Wang, Yunhan Jia, Yantao Lu, Zhenyu Zhong, Lawrence Carin,
and Suman Jana. Towards practical lottery ticket hypothesis for adversarial
training. CoRR, 2020.

[34] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. CoRR, 2016.

[35] Ji Lin, Chuang Gan, and Song Han. Defensive Quantization: When Efficiency
Meets Robustness. In International Conference on Learning Representations,
2019.

[36] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. CoRR, 2016.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks.
In International Conference on Learning Representations, 2018.

[38] Pratyush Maini, Eric Wong, and J. Zico Kolter. Adversarial robustness against
the union of multiple perturbation models. CoRR, 2019.

[39] Safiya Umoja. Noble. Algorithms of oppression: how search engines reinforce
racism. New York University Press, 2018.

63

[40] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben
Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy,
Alexander Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang,
Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi
Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber, and Ru-
jun Long. Technical report on the cleverhans v2.1.0 adversarial examples library.
arXiv preprint arXiv:1610.00768, 2018.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[42] Lorenza Saitta and Michele Sebag. Encyclopedia of Machine Learning, pages
767–773. Springer US, Boston, MA, 2010.

[43] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016.

[44] Ting Sun and Miklos A. Vasarhelyi. Predicting credit card delinquencies: an
application of deep neural networks. Intelligent Systems in Accounting, Finance
and Management, 25(4):174–189, 2018.

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, 2014.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
In International Conference on Learning Representations, 2014.

[47] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Prun-
ing neural networks without any data by iteratively conserving synaptic flow.
CoRR, 2020.

[48] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-
Henrik Jacobsen. Fundamental tradeoffs between invariance and sensitivity to
adversarial perturbations. CoRR, 2020.

[49] Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple
perturbations. CoRR, 2019.

64

[50] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On
adaptive attacks to adversarial example defenses. CoRR, 2020.

[51] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness May Be at Odds with Accuracy. In International
Conference on Learning Representations, 2019.

[52] Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Mnist challenge.
https://github.com/MadryLab/cifar10_challenge, 2017.

[53] Chaoqi Wang, Guodong Zhang, and Roger Grosse.

[54] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
Spatially Transformed Adversarial Examples. In International Conference on
Learning Representations, 2018.

[55] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K.
Jain. Adversarial attacks and defenses in images, graphs and text: a review.
CoRR, 2019.

[56] Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan
Zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial
robustness vs model compression, or both? CoRR, 2019.

[57] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In British
Machine Vision Conference, 2016.

65

https://github.com/MadryLab/cifar10_challenge

	Intro
	Related Work
	Adversarial Attacks and Defenses
	Network Compression and The Lottery Ticket Hypothesis
	Combining Compression and Adversarial Training

	Methods
	Standard Training
	Adversarial Attacks
	Adversarial Training
	Pruning
	Final Algorithm

	Experimental Results
	Methodology
	Results

	Discussion
	Limitations
	Other Observations
	Conclusion

	Hyperparameter Settings
	Rewind Epoch Comparison
	Supplementary Figures
	Full Y-Axis Plots
	Comparisons Across Training Adversaries
	Outlier Training Plots

